Monday, January 11, 2010

Time Keeps on Ticking, Ticking, Ticking...

Via the Dish, a fascinating introduction to From Eternity to Here, a book that is attempting to develop an overall theory of time, by Sean Carroll. Quote:

Remarkably, a single concept underlies our understanding of irreversible processes: something called entropy, which measures the "disorderliness" of an object or conglomeration of objects. Entropy has a stubborn tendency to increase, or at least stay constant, as time passes—that’s the famous Second Law of Thermodynamics. And the reason why entropy wants to increase is deceptively simple: There are more ways to be disorderly than to be orderly, so (all else being equal) an orderly arrangement will naturally tend toward increasing disorder. It’s not that hard to scramble the egg molecules into the form of an omelet, but delicately putting them back into the arrangement of an egg is beyond our capabilities.

The traditional story that physicists tell themselves usually stops there. But there is one absolutely crucial ingredient that hasn’t received enough attention: If everything in the universe evolves toward increasing disorder, it must have started out in an exquisitely ordered arrangement. This whole chain of logic, purporting to explain why you can’t turn an omelet into an egg, apparently rests on a deep assumption about the very beginning of the universe: It was in a state of very low entropy, very high order.

The arrow of time connects the early universe to something we experience literally every moment of our lives. It’s not just breaking eggs, or other irreversible processes like mixing milk into coffee or how an untended room tends to get messier over time. The arrow of time is the reason why time seems to flow around us, or why (if you prefer) we seem to move through time. It’s why we remember the past, but not the future. It’s why we evolve and metabolize and eventually die. It’s why we believe in cause and effect, and is crucial to our notions of free will.

And it’s all because of the Big Bang.

No comments: